H=-16t^2+1450

Simple and best practice solution for H=-16t^2+1450 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-16t^2+1450 equation:



=-16H^2+1450
We move all terms to the left:
-(-16H^2+1450)=0
We get rid of parentheses
16H^2-1450=0
a = 16; b = 0; c = -1450;
Δ = b2-4ac
Δ = 02-4·16·(-1450)
Δ = 92800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{92800}=\sqrt{1600*58}=\sqrt{1600}*\sqrt{58}=40\sqrt{58}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{58}}{2*16}=\frac{0-40\sqrt{58}}{32} =-\frac{40\sqrt{58}}{32} =-\frac{5\sqrt{58}}{4} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{58}}{2*16}=\frac{0+40\sqrt{58}}{32} =\frac{40\sqrt{58}}{32} =\frac{5\sqrt{58}}{4} $

See similar equations:

| 0=7x^2-22x+6 | | 1/12x+2x=75 | | y=2/3+1/6 | | 2-6x-6x=-130 | | -2-g=-165 | | y=5.4+1.6(0) | | -2h+10=-3h | | y=5.4+1.6(-1) | | 1÷3(z+4)-6=2÷3(5-z) | | y=5.4+1.6(-2) | | (9+3x)(10+3x)=240 | | 11x+13=240 | | y+3y=10 | | 7w-50=6;w | | -c^2+12=-4c | | 36+m=5*m | | 2x^2+6x-28=-2x^2 | | 94.2=(2)(3.14)(r)(6) | | 55t+25t=400 | | 5.5z=-55 | | j^2-33j+32=0 | | -6x-4=2(3x-2) | | 2x^2+6x-28=-2x | | -9x=-234 | | 4x^2+40x-236=0 | | -2(7x-3)=7 | | w-7.39=9.53 | | -14=-12(5-x) | | 8+9G=10g | | 25÷5(a+3)=25 | | 5x+3=9x-14 | | 3.2x-4.7(x-3)=11.3 |

Equations solver categories